1. The drying times of paint can be assumed to be normally distributed. A paint manufacturer paints 10 test areas with a new paint. The following drying times, to the nearest minute, were recorded.

$$
82,98,140,110,90,125,150,130,70,110 .
$$

(a) Calculate unbiased estimates for the mean and the variance of the population of drying times of this paint.

Given that the population standard deviation is 25 ,
(b) find a 95\% confidence interval for the mean drying time of this paint.
(5)

Fifteen similar sets of tests are done and the 95% confidence interval is determined for each set.
(c) Estimate the expected number of these 15 intervals that will enclose the true value of the population mean μ.
2. A random sample $X_{1}, X_{2}, \ldots, X_{10}$ is taken from a normal population with mean 100 and standard deviation 14.
(a) Write down the distribution of \bar{X}, the mean of this sample.
(b) Find $P(|\bar{X}-100|>5)$.
3. A random sample of the invoices, for books purchased by the customers of a large bookshop, was classified by book cover (hardback, paperback) and type of book (novel, textbook, general interest). As part of the analysis of these invoices, an approximate χ^{2} statistic was calculated and found to be 11.09.

Assuming that there was no need to amalgamate any of the classifications, carry out an appropriate test to determine whether or not there was any association between book cover and type of book. State your hypotheses clearly and use a 5% level of significance.
(Total 6 marks)
4. As part of a research project into the role played by cholesterol in the development of heart disease a random sample of 100 patients was put on a special fish-based diet. A different random sample of 80 patients was kept on a standard high-protein low-fat diet. After several weeks their blood cholesterol was measured and the results summarised in the table below.

Group	Sample size	Mean drop in cholesterol (mg/dl)	Standard deviation
Special diet	100	75	22
Standard diet	80	64	31

(a) Stating your hypotheses clearly and using a 5\% level of significance, test whether or not the special diet is more effective in reducing blood cholesterol levels than the standard diet.
(b) Explain briefly any assumptions you made in order to carry out this test.
5. Breakdowns on a certain stretch of motorway were recorded each day for 80 consecutive days. The results are summarised in the table below.

Number of breakdowns	0	1	2	>2
Frequency	38	32	10	0

It is suggested that the number of breakdowns per day can be modelled by a Poisson distribution.

Using a 5\% level of significance, test whether or not the Poisson distribution is a suitable model for these data. State your hypotheses clearly.
(Total 13 marks)
6. \quad The random variable R is defined as $R=X+4 Y$ where $X \sim \mathrm{~N}\left(8,2^{2}\right), Y \sim \mathrm{~N}\left(14,3^{2}\right)$ and X and Y are independent.

Find
(a) $\mathrm{E}(R)$,
(b) $\operatorname{Var}(R)$,
(c) $\mathrm{P}(R<41)$

The random variables Y_{1}, Y_{2} and Y_{3} are independent and each has the same distribution as Y.
The random variable S is defined as

$$
S=\sum_{i=1}^{3} Y_{i}-\frac{1}{2} X
$$

(d) Find Var (S).
(Total 12 marks)
7. As part of her statistics project, Deepa decided to estimate the amount of time A-level students at her school spend on private study each week. She took a random sample of students from those studying Arts subjects, Science subjects and a mixture of Arts and Science subjects. Each student kept a record of the time they spent on private study during the third week of term.
(a) Write down the name of the sampling method used by Deepa.
(b) Give a reason for using this method and give one advantage this method has over simple random sampling.

The results Deepa obtained are summarised in the table below.

Type of student	Sample size	Mean number of hours
Arts	12	12.6
Science	12	14.1
Mixture	8	10.2

(c) Show that an estimate of the mean time spent on private study by A level students at Deepa's school, based on these 32 students is 12.56 , to 2 decimal places.

The standard deviation of the time spent on private study by students at the school was 2.48 hours.
(d) Assuming that the number of hours spent on private study is normally distributed, find a 95% confidence interval for the mean time spent on private study by A level students at Deepa’s school.

A member of staff at the school suggested that A level students should spend on average 12 hours each week on private study.
(e) Comment on this suggestion in the light of your interval.
(Total 12 marks)
8. For one of the activities at a gymnastics competition, 8 gymnasts were awarded marks out of 10 for each of artistic performance and technical ability. The results were as follows.

Gymnast	A	B	C	D	E	F	G	H
Technical ability	8.5	8.6	9.5	7.5	6.8	9.1	9.4	9.2
Artistic performance	6.2	7.5	8.2	6.7	6.0	7.2	8.0	9.1

The value of the product moment correlation coefficient for these data is 0.774 .
(a) Stating your hypotheses clearly and using a 1% level of significance, interpret this value.
(b) Calculate the value of the rank correlation coefficient for these data.
(c) Stating your hypotheses clearly and using a 1% level of significance, interpret this coefficient.
(d) Explain why the rank correlation coefficient might be the better one to use with these data.

1. (a) $\hat{\mu}=\frac{82+98+140+110+90+125+150+130+70+110}{10}$ M1
$=110.5$ A1
$\hat{\sigma}=\frac{1}{9}\left(128153-10 \times 110.5^{2}\right)$ B1

128153 M1
$=672.28$
(AWRT 672)
A1 5
(b) 95\% confidence limits are
(condone use of 5 instead of 25) M1 (for 1.96) B1 A1ft

$$
110.5 \quad \pm 1.96 \times \frac{25}{\sqrt{10}}
$$

95% conf. lim. $=\quad \operatorname{AWRT}(95,126)$
(c) Number of intervals $=\frac{95}{100} \times 15$
$=14.25 \quad$ (allow 14 or 14.3 if method is clear) \quad A1 2
2. (a) $\bar{X} \sim \mathrm{~N}\left(100, \frac{14^{2}}{10}\right)$

Normal B1

$$
100, \frac{14^{2}}{10}
$$

(b) $\mathrm{P}(|\bar{X}-100|>5)=\mathrm{P}(\bar{X}>105)+\mathrm{P}(\bar{X}<95)$

$$
\begin{aligned}
& =2 \mathrm{P}(\bar{X}>105) \\
& =2 \mathrm{P}\left(Z>\frac{105-100}{\sqrt{\frac{14^{2}}{10}}}\right) \quad \mathrm{A} 1 \\
& =2 \mathrm{P}(\mathrm{Z}>1.13) \\
& =0.2584 \quad \mathrm{~A} 1
\end{aligned}
$$

3. H_{0} : No association between type and cover
H_{1} : Association between type and cover
both B1
$\alpha=0.05 ; v=2 ;$
Critical value $=5.991$
$\sum \frac{(O-E)^{2}}{E}=11.09$
Since 11.09 is in the critical region, there is evidence of association between type of book and type of cover

M1 A1
6
[6]
4.
(a) $\mathrm{H}_{0}: \mu_{\mathrm{sp}}=\mu_{\mathrm{st}} ; \mathrm{H}_{1}: \mu_{\mathrm{sp}}>\mu_{\mathrm{st}}$;
B1 B1
$\alpha=0.05 ;$ critical region: $z>1.6449$
standard error $=\sqrt{\frac{22^{2}}{100}+\frac{31^{2}}{80}}=4.1051 \ldots$.

$$
z=\frac{75-64}{4.1051 \ldots}=2.68
$$

Since 2.68 is in the critical region there is evidence to reject H_{0} and conclude that the special diet is more effective in reducing blood cholesterol.

M1 A1 ft
9
(b) Drop in blood cholesterol levels are normally distributed, or Central Limit Theorem can be applied, or standard deviations of the populations are 22 and 31

Any two
B1 B12
5. (a) H_{0} : Poisson distribution is a suitable model
H_{1} : Poisson distribution is not a suitable model both B1

From these data $\lambda=\frac{52}{80}=0.65$
M1 A1

Expected frequencies 41.76, 27.15, $\underbrace{8.82,2.27}_{11.09}$

$$
80 \times P(X=x)
$$

M1 A2/1/0
Amalgamation

$$
\begin{aligned}
& \alpha=0.05, v=3-1-1=1 ; \text { critical value }=3.841 \\
& \sum \frac{(O-E)^{2}}{E}=1.312
\end{aligned}
$$

B1 ft; B1 ft

M1 A1 ft

Since 1.312 is not the critical region there is insufficient evidence to reject H_{0} and we can conclude that the Poisson model is a suitable one. $\quad \mathrm{M} 1 \mathrm{~A} 1 \mathrm{ft} 13$
6. (a) $\mathrm{E}(R)=\mathrm{E}(X)+4 \mathrm{E}(Y)=8+(4 \times 14)=64$

M1 A1 2
(b) $\quad \operatorname{Var}(R)=\operatorname{Var}(X)+16 \operatorname{Var}(Y)=2^{2}+\left(16 \times 3^{2}\right)$

M1 A1

$$
=148
$$

A1 3
(c) $\mathrm{P}(R<41)=\mathrm{P}\left(Z<\frac{41-64}{\sqrt{148}}\right)=\mathrm{P}(Z<-1.89)$

M1 A1 ft

$$
=0.0294
$$

A1 3
(d) $\operatorname{Var}(S)=3 \operatorname{Var}(Y)+\left(\frac{1}{2}\right)^{2} \operatorname{Var}(X)$

M1 M1

$$
\begin{aligned}
& =27+1 \\
& =28
\end{aligned}
$$

A1 4
[12]
7. (a) Stratified sampling

B1 1
(b) Uses naturally occurring (strata) groupings e.g. variance of estimator of population mean is usually either B1 reduced, individual strata estimates available
(c) $\bar{x}=\frac{(12 \times 12.6)+(12 \times 14.1)+(8 \times 10.2)}{32}$

$$
=12.56
$$

(d) Confidence interval is $12.56 \pm 1.96 \times \frac{2.48}{\sqrt{32}}$
i.e. $12.56 \pm 0.859276 \ldots$

B1
i.e. (11.70, 13.42)
accept (11.7, 13.4)
(e) 12 is within the confidence interval; so the time spent by these students is in agreement with the suggestion of the member of staff. B1; B1 2
8. (a) $\mathrm{H}_{0}: \rho=0, \mathrm{H}_{1}: \rho>0$

B1 B1
B1
M1 A1 5

Since 0.774 is not in the critical region there is insufficient evidence of positive correlation.
(b) e.g.

R_{T}	3	4	8	2	1	5	7	6
R_{A}	2	5	7	3	1	4	6	8

Ranks M1
All correct A1
$\sum d^{2}=10 \quad$ M1 A1
$r_{s}=1-\frac{6 \times 10}{8 \times 63}=0.881 \quad$ M1 A1 6
(c) $\mathrm{H}_{0}: \rho=0, \mathrm{H}_{1}: \rho>0 \quad$ both B1
$\alpha=0.01$; critical value: $0.8333 \quad$ B1
Since 0.881 is in the critical region there is evidence of positive correlation.

A1
3
(d) Because it makes no distributional assumptions about the data or order B1 is more important than the mark

Product moment correlation assumes bivariate normality and it is very unlikely that these scores will be distributed this way.

B1 2

1. The mean was almost always correct and the majority of the candidates knew how to find an unbiased estimate of the variance. Most knew how to find 95\% confidence limits although a few used 1.6449 and some thought the formula was $1.96 \pm \frac{\sigma}{\sqrt{n}}$. Occasionally the standard deviation of 25 was misread as a variance. The final part caused some confusion. Many students carried out the required calculation but some started to find the width of the interval and others did not attempt this part.
2. No Report available for this question.
3. No Report available for this question.
4. No Report available for this question.
5. No Report available for this question.
6. No Report available for this question.
7. No Report available for this question.
8. No Report available for this question.
